Indian Statistical Institute, Bangalore

B. Math. Second Year

First Semester - Analysis III

Mid-Semester Exam

Date : Sept 09, 2014

Answer any five, each question carries 8 marks, total marks: 40

- (a) Let (f_n) be a sequence of Riemann-integrable functions on [a, b] that converges uniformly to a function f on [a, b]. Prove that f ∈ R[a, b] and ∫ f_n → ∫ f.
 (b) Let (f_n) be a sequence of continuous functions on a compact metric space K. Suppose (f_n) is pointwise bounded and equicontinuous. Prove that (f_n) has a subsequence that converges uniformly on K (Marks: 4).
- 2. Let (f_n) be a uniformly converging sequence of continuous functions on \mathbb{R} .
 - (a) If $x_n \to x$, prove that $\lim_{n\to\infty} [f_n(x_n) f_n(x)] = 0$ (Marks: 5).
 - (b) If $f_n(t) = f(nt)$ for some function f on \mathbb{R} , prove that f is constant.
- 3. (a) Let (P_n) be a sequence of real polynomials such that (P_n) converges uniformly to a function f on \mathbb{R} . Prove that f is also a polynomial *(Marks: 5)*.

(b) Let (f_n) be a uniformly convergent sequence of continuous functions on a compact metric space K. Prove that (f_n) is equicontinuous.

4. (a) Let (f_n) be a uniformly bounded sequence of Riemann-integrable functions on [a, b]. Define $F_n(x) = \int_a^x f_n(t)dt$, for $x \in [a, b]$. Prove that (F_n) has a subsequence that converges uniformly on [a, b] (Marks: 4).

(b) Let (f_n) and (g_n) be uniformly converging sequence of functions on a set E. Does (f_ng_n) converge uniformly? Justify your answer.

- 5. (a) If $\gamma: [a, b] \to \mathbb{R}^d$ is smooth, prove that γ is rectifiable and $\Lambda(\gamma) = \int_a^b ||\gamma'(t)|| dt$. (b) Does $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x, y) = (3x^2y, x^3y)$ have potential? Justify your answer (Marks: 3).
- 6. (a) Let φ be a differentiable scalar valued function with continuous gradient ∇φ on an open subset S of ℝ^d. If α: [a, b] → S is a piecewise smooth path, prove that ∫∇φdα = φ(α(b)) φ(α(a)) (Marks: 4).
 (b) Let S = {(x, y) ∈ ℝ² | ½ < x² + y² < 2} and f: S → ℝ² be f(x, y) = 1/(x²+y²)(-y, x). Is the line integral of f independent of paths? Justify your answer.
- (a) If α: [a, b] → ℝ^d is a rectifiable (not necessarily smooth) curve, prove that s: [a, b] → ℝ defined by s(t) = Λ(α|_[a,t]), for t ∈ [a, b] is continuous (Marks: 5).
 (b) Let f be a continuous function on an open subset S of ℝ^d such that ∫ fdα =

 $c \sum (y_i - x_i)$ for any path α from x to y in S. Prove that $f = c(1, 1, \dots, 1)$.